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Abstract. Police investigators are routinely asked to search for and identify groups of
related crimes, known as patterns. Investigators have historically built patterns with a
process that is manual, time-consuming, memory based, and liable to inefficiency. To
improve this process, we developed a set of three supervised machine-learning models,
which we called Patternizr, to help identify related burglaries, robberies, and grand lar-
cenies. Patternizr was trained on 10 years of manually identified patterns. Problematic
administrative boundaries and sensitive suspect attributes were hidden from the models.
In tests on historical examples from New York City, the models perfectly rebuild ap-
proximately one-third of test patterns and at least partially rebuild approximately four-
fifths of these test patterns. Themodels have been deployed to every uniformedmember of
the New York City Police Department through a custom software application, allowing
investigators to prioritize crimes for review when building a pattern. They are used by a
team of civilian crime analysts to discover new crime patterns and aid in making arrests.

History: This paper was refereed.
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Introduction
Predictive policing can be defined as “the applica-
tion of analytical techniques—particularly quantitative
techniques—to identify likely targets for police inter-
vention and prevent crime or solve past crime by mak-
ing statistical predictions” (Perry et al. 2013, pp. 1–2).
These techniques have come into increasingly common
usage as the amount of data available to law enforce-
ment has grown (Ferguson 2017a, Ridgeway 2018).
Law enforcement agencies have a tradition of using
quantitative techniques to informoperations. Pioneering
techniques in queuing (Larson 1972, Green and Kolesar
2004), in resource allocation via hotspots (Maple 2000),
and in organizational management (Henry 2002) have
been developed and implemented in police depart-
ments worldwide. Continuing this tradition, a wide va-
riety of predictive policing applications are in use by law
enforcement agencies today, including algorithms that
forecast geographies at high risk of imminent crime
(Mohler et al. 2015, Levine et al. 2017), predict re-
cidivism to aid in sentencing (Berk and Bleich 2014),
or identify individuals at risk for involvement in future
gun violence (Saunders et al. 2016). Advanced analytics
have also been used in police management, such as op-
timizing the recruitment process for police applicants
(Lim et al. 2009), tracking the locations of officers on
patrol (Weisburd et al. 2015), and identifying officers
in need of counseling or training (Helsby et al. 2018).

One topic that has received less attention is the
process of identifying crime patterns. Researchers
have outlined potential approaches for using ad-
vanced analytics to aid in the identification of crime
patterns by connecting similar crimes (Wang et al.
2013, Porter 2016), as analogous recommendation en-
gines have been the subject of much attention in other
domains (Bell and Koren 2007); however, we know
of no previous production deployment of these al-
gorithms in a law enforcement environment. To aid
New York City Police Department (NYPD) investi-
gators in identifying groups of related crimes, we have
designed and implemented a recommendation algo-
rithm, which we call Patternizr.
In 2016, people in New York City reported ap-

proximately 13,000 burglaries, more than 15,000
robberies, and over 44,000 grand larcenies (New York
City PoliceDepartment 2017). Evidence from the legal
system and criminological research indicates that
many of these crimes were committed by serial of-
fenders (Wolfgang et al. 1987). A series of such
crimes—committed by the same criminal—is known
as a pattern. The crimes in a pattern may be nearby in
space, similar in times and days of occurrence, and
(or) alike in method (also known as the modus oper-
andi, or M.O.). Once a pattern has been identified, it is
possible for police to use evidence from related crimes to
more easily identify and apprehend the perpetrator.
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Additionally, if police investigators have connected an
arrest to multiple crimes as part of a pattern, they can
close more investigations and prosecution can proceed
with more accurate charges.

However, identifying patterns is not an easy task.
Investigators at many police departments follow a
manual and memory-based pattern identification
process that has not changed much from the days of
paper records (Alston 2008). While reading through a
crime report, known as a complaint, an investigator
attempts to recall past crimes with similar charac-
teristics. If two complaints seem to the investigator
to be similar and could plausibly be committed by
the same individual, the investigator links the two
complaints into a pattern. Because investigators focus
most of their limited time on recent complaints in
their own precincts, patterns that occur across sig-
nificant distances (particularly across multiple pre-
cincts) or over long periods are especially difficult to
identify. Although modern technology has aug-
mented this memory-based process with simple
search engines (Levine and Tisch 2014), these searches
are typically done using exact categorical matches,
rather than searching for broader similarity across
many disparate crime characteristics. Collectively,
the NYPD still spends hundreds of thousands of
hours each year searching for patterns using these
methods.

Solution Design
Patternizr is a decision support tool and recom-
mendation engine that consists of a set of machine-
learning models to make this search process more
efficient and effective. The purpose of Patternizr is to
take a “seed” complaint, chosen by the analyst, and
compare this seed against the hundreds of thou-
sands of recorded crimes in NYPD’s crime database.
With each comparison between a crime and the seed,
Patternizr generates a “similarity score” that quan-
tifies the likelihood that the pair of crimes are in a
pattern together. Once all similarity scores have been
generated, Patternizr ranks the pairs in descending
order by similarity score and returns a list for the
analyst to review. The complaints most likely to be in a
pattern with the seed complaint appear at the top of
the list. After reviewing these ranked results, the ana-
lyst can decide which complaints should be grouped
together into a pattern.

Themodels that comprise Patternizr are supervised
machine-learning classifiers; that is, they are statis-
tical models that learn from historical examples
where classifications are known and are then used to
predict the classification for samples for which the
classifications are unknown. In the case of Patternizr,
each example is a pair of crimes, and the classification

is whether the two crimes are in a pattern together.
The collection of examples used for training is known
as a training set. Each model learns to perform clas-
sification by incorporating information from a set of
attributes, known as features, which are selected to
represent relevant characteristics about each pair of
crimes. Much of the work of building a machine-
learning model is in identifying and representing
features to enable the model to make accurate clas-
sifications. We call this step feature extraction. For
Patternizr, as we discuss in the Sample Selection sec-
tion, we chose samples for the training set in such a
way that we improved information gain. Finally, we
trained a specific type of machine-learning model—a
random forest—using standard techniques.
We used a separate model for each of three dif-

ferent crime types (burglaries, robberies, and grand
larcenies) because these crime types have a sufficient
corpus of prior manually identified patterns for use
as training examples. This corpus consists of ap-
proximately 10,000 patterns between 2006 and 2015
from each crime type. In addition to manually
identified official patterns, a portion of this corpus is
built from complaint records where the same indi-
vidual was arrested for multiple crimes of the same
type within a span of two days. When these arrest
groupings are included with manually identified
patterns, each crime type has approximately 30,000
complaints, which are included in a pattern—a small
portion of the 200,000–400,000 complaints for each
crime type recorded over the same 10-year period. In
this section, we describe how we constructed the
features used in each of the three machine-learning
models; then discuss how we trained the models
that were put into production. Figure 1 depicts the
process by which these models were produced. Al-
though we constructed separate models for each of
the three crime types, the models rely on a nearly
identical set of features and are trained in the
same way.

Figure 1. Process Overview for Training Patternizr

Notes. Historical pattern data are used to choose a sample of com-
plaints. That sample and any corresponding arrests are run through
the similarity calculations to build features for learning. The random
forest model takes those features and uses the historical patterns for
training to produce a production model.
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Feature Extraction
We construct the features on which each model relies
from the information contained in complaints. A com-
plaint contains a mix of unstructured text describing
details of the crime and structured fields about the
crime, including the date and time (which can be a
range if the precise time of occurrence is unknown),
location, crime subcategory, M.O., and suspect in-
formation. We use this information to calculate the five
types of crime-to-crime similarities used as features by
Patternizr: location,date-time, categorical, suspect, and
unstructured text.

We selected these similarities by discussing pattern
discovery with NYPD investigatory and enforcement
personnel with many years of experience manually
building patterns. They described the data sources

they have used to identify patterns, as well as specific
pieces of information that led them to believe that
two complaints were connected. Additionally, they
discussed many specific patterns they had identi-
fied and the unique set of circumstances that con-
nected each group of crimes. In the course of these
discussions, we also learned much about the in-
efficiencies that are inherent in manual pattern cre-
ation, as we detail in the introduction, and that could
be reduced with the help of an automated tool.
Because Patternizr predicts the likelihood of a

complaint pair belonging together in a pattern, the set
of features read by the model (Table 1), which we call
K, is derived from pairwise comparisons between
crimes i and j. Each of these pairwise comparisons,
which we call Xk

i,j, is a similarity calculation between

Table 1. List of the Features Included in Patternizr

Number Attribute Type Similarity measure

1 Location (XY) Location Distance apart (Euclidean)
2 Location (XY) Location Distance apart (exponential)
3 Location (XY) Location Binned midpoint (longitudinal)
4 Location (XY) Location Binned midpoint (latitudinal)
5 Location (XY) Location Location frequency (sum)
6 Location (XY) Location Location frequency (maximum)
7 Location (XY) Location Location frequency (minimum)
8 Location (XY) Location Location frequency (product)
9 Date-time of occurrence Date-time Time of day similarity
10 Date-time of occurrence Date-time Time of week similarity
11 Date-time of occurrence Date-time Size of occurrence windows (larger)
12 Date-time of occurrence Date-time Size of occurrence windows (smaller)
13 Date-time of occurrence Date-time Size of occurrence windows (difference)
14 Date-time of occurrence Date-time Days apart
15 Date-time of arrest Date-time Days between arrest and crime
16 Premise type Categorical Categorical similarity
17 Crime classification Categorical Categorical similarity
18 M.O. categorical fields Categorical Categorical similarity
19 M.O. weapon Categorical Categorical similarity
20 Location details Categorical Categorical similarity
21 Firearm discharged Categorical Categorical similarity
22 Crime attempted or completed Categorical Categorical similarity
23 Domestic crime indicator Categorical Categorical similarity
24 Medical assistance required Categorical Categorical similarity
25 Suspect height(s) Suspect Group similarity (continuous)
26 Suspect weight(s) Suspect Group similarity (continuous)
27 Suspect force used Suspect Group similarity (categorical)
28 Suspect count Suspect Difference
29 M.O. victim count Suspect Difference
30 Complaint narrative (burg only) Unstructured text Average similarity
31 Complaint narrative (burg only) Unstructured text Sum of similarity
32 Complaint narrative (rob and GL) Unstructured text Cosine similarity
33 M.O. suspect statement (rob and GL) Unstructured text Cosine similarity
34 M.O. victim actions (rob and GL) Unstructured text Cosine similarity
35 M.O. method of flight (rob and GL) Unstructured text Cosine similarity
36 Premise name (rob and GL) Unstructured text Cosine similarity
37 Property taken (rob and GL) Unstructured text Cosine similarity
38 All unstructured text Unstructured text Cosine similarity
39 Complaint narrative Unstructured text Rare-word matches

Notes. These features are indexed by the variable k in the text. We use the following abbreviations: “burg” represents burglary, “rob” represents
robbery, and “GL” represents grand larceny.
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a selected attribute k of the pair’s complaint reports.
The mathematical details of our more complicated
features can be found in Appendix A.

For date-time, location, and categorical attributes,
we used similarity computation methods previously
described in related work on Cambridge Police
Department data (Wang et al. 2013). However, we
modified that formulation by excluding categorical in-
formation corresponding to administrative geogra-
phies (i.e., a feature noting that the pair exists in the
same precinct) to encourage matches across such bound-
aries. Date-time and location attributes are useful fea-
tures because detectives’ experiences have shown that
complaints in patterns are likely to happen nearby in
space and time. Categorical attributes are important
at identifying a consistent M.O. We also included
metrics to compare the descriptions of groups of sus-
pects (e.g., the count of suspects who have committed a
crime); however, we excluded sensitive suspect attri-
butes (e.g., race). Suspect descriptions are particularly
useful in identifying patterns of violent crimes such as
robberies because, in such crimes, the victim physi-
cally encounters the suspect. Finally, we added fea-
tures for the similarity of unstructured text narratives,
including the cosine similarity of vector representa-
tions of the descriptions, as well as the number of rare-
word matches between two descriptions. These
features were included as a reflection of the central role
that unstructured text plays in themanual identification
of patterns.

Many features represent similar, but distinct, rep-
resentations of the underlying data. This allows the
algorithm to leverage as much available information
as possible. We constructed three slightly different
feature sets for each crime type, based on the char-
acteristics relevant, available, and found to be im-
portant for that crime type. For example, the M.O.
categorical field for “method of entry” is relevant to
burglaries but not for robberies or grand larcenies.

Location Features
We incorporate eight similarities (labeled with indices
k = 1 through k = 8) derived from location information,
including a strict Euclidean distance d (in feet) be-
tween the crime pair and an exponential factor e−d.We
also include two location features corresponding to
longitude and latitude but binned to very coarse
squares (over nine miles on a side, for a total of roughly
11 boxes possible across the geography of New York
City) to minimize the possibility that higher-resolution
geographies could be used by the model as a proxy
variable for sensitive attributes (such as race). For each
pair of crimes, we note which bin contains the pair’s
midpoint and include this as a feature. We also use a
two-dimensional location frequency distribution cal-
culated with kernel density estimation (KDE) (Hastie

et al. 2009a), which represents a heatmap of where
crime is most (and least) common in the city. For each
pair, we add a feature for the sum, maximum, min-
imum, and product of these KDE values, providing
the model with a range of information on how com-
mon the locations were for both crimes.

Date-Time Features
Seven separate similarities (k = 9 through k = 15) de-
pend on the date-time attributes of the two com-
plaints. The time-of-day similarity measure, which
compares the time of day of the two crimes’ occur-
rences, is drawn directly from Wang et al. (2013).
Following their approach, we calculate the frequency
distribution of occurrence times for each crime type
using KDE. Then, for each pair, we weight the dif-
ference between occurrence times by the frequency
of those occurrence times. Crimes that occur close in
time to each other, and at rare times, will have a low
measure, indicating greater similarity between crime
times. Crimes that occur far apart in time, and during
common times, will have a high measure, indicating
lower similarity between crime times. Alternatively,
crimes that are a certain distance apart in time but oc-
cur during rare times will be more similar than crimes
that are the samedistance apart in time but occur during
common times. This calculation can also be applied
to occurrence times specified over an occurrence win-
dow—typical for crimes such as burglaries where the
victim often is not present to witness the crime and
therefore knows only that the crime happened within
some time span. Comparisons across occurrence win-
dows are made by dividing the window evenly into 10
points and averaging similarities across all 10 points.
We applied the same process to time-of-week similar-
ities. In addition, we included features for the duration
of the larger and smaller occurrence windows from the
pair of crimes, as well as the difference in size of the two
occurrence windows. We included a simple feature—
days apart—that we calculated between the mid-
points of the time ranges if the occurrence time was
over a range. Finally, we included a feature for the
time between an arrest associated with the earlier
crime and the occurrence of the later crime so that
the model could have information about whether a
criminal was potentially incarcerated.

Categorical Features
Much of the information in a complaint is in cate-
gorical form, including premise type, crime classifi-
cation, the M.O. itself, weapon type, and details about
the crime’s location. Other information is stored in
categorical fields that have yes/no/unknown struc-
tures; examples include whether a firearm was dis-
charged during the crime, whether the crime was
attempted or completed, whether someone required
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medical assistance, and whether the crime was do-
mestic in nature. For all our categorical features (k = 16
through k = 24), we incorporate a simplified version
of Goodall’s similarity measure (Boriah et al. 2008),
identical to that used by Wang et al. (2013). This
measure accounts for the frequency of categorical
values, causing two records that match on a rare value
to be rated as more similar than two records that match
on a common value. For categorical values that may
take onmultiple values for a single crime (e.g.,multiple
weapon types may be associated with a single rob-
bery), possible values are encoded as dummyvariables
(Hastie et al. 2009b) before the categorical similarity
calculation. In addition, many categories are too fine
grained to be useful, because Goodall’s simplified sim-
ilarity measure is only nonzero when categories match
exactly on both complaints. For example, NYPD crime
classifications for burglaries include three separate
categories for residential burglary, even though a
perpetrator with the same M.O. may plausibly commit
crimes across all three types. To address this issue, we
asked uniformed police experts to group the existing
classification into broader categories using domain
knowledge. We included both the ungrouped and
grouped crime classification similarities as features
for the algorithm.

Suspect Features
We chose to include only nonsensitive suspect attri-
butes, including height, weight, force used, and count
of suspects, as suspect features for Patternizr. Suspect-
attribute comparison differs from categorical compari-
son because it is often a many-to-many comparison for
a crime pair. It is generally not possible to know from
two lists of suspects which descriptions correspond to
the same individual; therefore, comparisons must be
made between all possible pairs of individuals (with
each list providing one of the pair). For example, for the
height and weight continuous variables (k = 25 and
k = 26), we calculated the minimum difference be-
tween each possible pair of suspect descriptions and
then divided the sum of differences by the quantity
of suspects. For the categorical feature of force used
(i.e., whether the suspect threatened to use force, or
actually used force, in the commission of a robbery),
we counted and tabulated the number of matches
between possible suspect pairs (k = 27) in a similar
fashion. We also included the difference in suspect
count and victim count (which is a characteristic of the
M.O.) as features (k = 28 and k = 29).

Unstructured Text Features
We also created a number of unstructured text features,
including comparisons of the complaint text narrative,
which plays a central role in the manual identification
of patterns. Unstructured text also comprises the

suspect’s statements, victim actions, method of flight,
premise name, and property taken. For burglaries, we
calculate a word-by-word score identical to the cat-
egorical similarities, but on a word-by-word basis
rather than attribute basis, for words that match
between the narratives on both complaints. We then
provide an average and sum of these similarities
(k = 30 and k = 31).
For robberies and grand larcenies, we use a more

advanced method on other unstructured fields in
addition to the narratives. We calculate the term-
frequency/inverse-document frequency (TF/IDF)
(Jurafsky and Martin 2008) vector, representing the
presence and importance of the set of words that
comprise each unstructured text. We compute a co-
sine similarity between the pair of TF/IDF vectors
for each unstructured text attribute (labeled with
indices k = 32 through k = 37).
We also combine all unstructured text from each

complaint and treat it as a separate unstructured text
attribute; this permits information that appears
fragmented across different narratives to be compared
at once across all possible sources. For this combined
narrative, we calculate the cosine similarity (k = 38) and
also count the number of rare words that did not
appear in the training corpus but do appear in both
complaints, and we include that count as a feature
(k = 39). These unusual words may indicate the pres-
ence of a consistent and unusual M.O.

Sample Selection
A very small proportion of all possible crime pairs
(about 8 × 10−8, 3 × 10−8, and 9 × 10−9 of possible
burglary, robbery, and grand larceny pairs, respec-
tively) are together in manually identified patterns. We
refer to these crime pairs as positive pairs. To preserve
maximum information gain from the corpus of pat-
terns while also permitting model training within
memory constraints, we included all positive pairs in
the training set and performed down-sampling on the
set of possible negative pairs.
Purely random sampling of negative pairs would

largely consist of pairs that are far apart in space and
time, encouraging the model to identify positives
based solely on proximity in those dimensions. To
counteract this effect, we sampled nearby negative
pairs at a higher rate than distant negative pairs. We
paired every pattern crime with a random sample of
2% of all negative examples within 3,500 feet and an
additional random sample of 0.1% of all crimeswithin
80 days of the crime’s midpoint in time. These were
sampled uniformly: all negative examples within 3,500
feet or within 80 days of the crime’s midpoint in time
were equally likely to be selected. We repeatedly tested
different thresholds until models trained on these data
rated nonspatial or nontemporal features roughly as
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important as distance and time apart (as measured by
feature importances). Finally, a substantial portion of
distant negative pairs that included one crime known
to be part of a pattern was also selected at random—
approximately 20 times the volume of already se-
lected positive and nearby pairs for that crime.

We subsequently uniformly sampled this set to fit
in memory for model training. We trained the model
for each crime type on 20–32 million pairs of crimes.
For burglaries, robberies, and grand larcenies, 0.2%,
0.08%, and 0.06% of this reduced set of pairs were
positive, respectively.

Model Training
For each of the three crime types, we relied on a
random forest model to calculate an overall similarity
score between two crimes. We chose a random forest
model for several reasons. First, tree-based classifi-
cation algorithms are able to learn interactions be-
tween features, which is important when considering
how separate crime subtypes could exhibit differ-
ent similarity structures. For example, grand larceny
pickpocketing patterns may generally occur much
closer in space (e.g., on a specific street corner) when
compared with grand larceny shoplifting patterns,
which may generally happen across the city. Second,
random forests have demonstrated an ability to achieve
impressive performance while avoiding overfitting
(Breiman 2001). Third, random forests are imple-
mented in many standard machine-learning libraries,
can be trained and executed in parallel, and do not
require graphics processing units to execute. Finally,
similar to many other classification algorithms, ran-
dom forests generate a “score”; in Patternizr’s case,
this represents the confidence that the pair belongs
together in a pattern. These similarity scores are scaled
between 0 and 1; therefore, they can be naturally rep-
resented to an investigator in the form of a percentage.

We used the standard implementation of the ran-
dom forest algorithm in the Python library scikit-
learn (Pedregosa et al. 2011). Each random forest
model is an ensemble of hundreds of decision trees
that are trained on the calculated features and re-
sponses. We trained each individual tree on an in-
dependently bootstrapped sample of the training set,
with a randomized portion of the full set of featuresK.
We describe the mathematical details of how we
trained the trees in Appendix B.

Each random forest model also has a collection of
settings, which are known as hyperparameters, that
specify model structure and operation. We optimized
several hyperparameters for the random forest model,
including the size of the randomized subset of features
and the maximum allowed tree depth. We used a cross-
validated randomized hyperparameter search (Bergstra
and Bengio 2012), which repeatedly selects a random

combination of hyperparameters from a prespecified
distribution of values and then tests the performance
of this combination on several subsets of the data,
preventing overfitting to any particular subset. For
each crime type, we trained one random forest model
with up to 220 trees using the generated features and
tuned hyperparameters.
We set our hyperparameter search to optimize

hyperparameters for the best possible average pre-
cision (Manning et al. 2009)—an evaluation metric
that gauges whether desired matches are ranked
highly in a query. In Patternizr’s case, the query is the
list of complaints returned by Patternizr when the
user chooses a seed. Average precision relies on the
precision metric, which measures the proportion of a
predicted positive class that is actually positive. For
Patternizr, precision is the percentage of suggested
matches that are actually in a pattern with the seed.
Each true match in Patternizr’s ranked list can be
represented by the precision at that rank—the num-
ber of true matches encountered so far divided by the
rank (i.e., the total number of suggested matches
provided by Patternizr at that point). Average pre-
cision, therefore, is simply an average of these pre-
cisions for all true matches in the test pattern.

Performance
We tested the performance of Patternizr on a variety
of objectives. First, we measured the proportion of
test patterns that were entirely or partially rebuilt by
the models, even though the models had not pre-
viously seen these test patterns. Second, we con-
structed a benchmark model as a simplified proxy for
existing practice to test whether investigators using
Patternizr would be more efficient than those using
existingmethods. Third,we examined the features each
model had isolated asmost useful in identifying patterns
and compared those with investigators’ intuition. Fi-
nally, we measured whether Patternizr made con-
sistent recommendations across racial groups.
We validated all three Patternizr models on official

patterns that were not included in the training set. For
each crime type, we randomly chose 150 test patterns
and randomly selected a seed from each pattern. We
then noted the rankings of the remaining pattern
crimes as provided by Patternizr’s similarity scores.
We bootstrapped this process by randomly selecting
these 150 test patterns 1,000 times, which provided
reliable estimates and uncertainty bounds. Table 2
shows the results from this analysis.
The algorithm completely rebuilt (i.e., ranked all

in-pattern pairs ahead of all nonrelated pairs) ap-
proximately one-third of test patterns. Additionally,
approximately four-fifths of burglary, robbery, and
grand larceny patterns had at least one match in the top
10 rankings out of the entire corpus of complaints for
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that crime type. Figure 2 shows the rankings for all test
patterns. In reality, this performance is likely an un-
derestimation, given that investigators have likely
missed actual matches in the historical corpus.

To test whether Patternizr improves investigator
efficiency, we built a simple baseline algorithm for
comparison. The baseline algorithm assumes that
investigators examine complaints nearest in time to
the seed complaint first while always limiting them-
selves to complaints in the same precinct as the chosen
seed. This method provides a baseline ranked list that
we can compare with Patternizr’s ranked results. We
restricted the comparison with local patterns in the
test set because the baseline algorithm would per-
form poorly (and unrealistically) on patterns that
span multiple precincts. We compare the ranking of
that complaint with how it appears in the ranked list
generated by Patternizr for all the local patterns in
our test data set (Figure 3).

We found that for all three crime types, Patternizr is
typically an improvement on the baseline algorithm;
this estimate is conservative because Patternizr is
especially helpful on patterns spanning multiple
precincts.

In Figure 4, we show the top 10 feature importances
for each model. The features for distance, days apart,
and narrative information play a top role in all three

models. NYPD’s pattern subject matter experts con-
firmed that these three features contain key informa-
tion for pattern creation. Other top features include
similarity between other unstructured text fields and
time-of-day and day-of-week similarity. None of the
top 10 features for each crime type was particularly
surprising to our subject matter experts. Note that these
calculations only measure importance; they do not in-
dicate how positive or negative changes in the feature
will affect the model score.
It is important to measure whether the recom-

mendations that Patternizr makes are not only valu-
able but also fair, particularly given the growing
concern that predictive policing tools may perpetuate
disparate impact (Lum and Issac 2016, Corbett-Davies
et al. 2017, Ferguson 2017b).We intentionallydesigned
the algorithm to minimize disparate impact on any
specific group. First, the algorithm is completely blind
to sensitive information about potential suspects,
including race and gender, which were not included
as a similarity feature for the predictive model. Sec-
ond, we kept potential proxy variables for sensitive
information—particularly location—extremely coarse
to ensure correlation with sensitive attributes had a
very low degree of certainty while retaining some
very general information about location. Finally, and
most important, several levels of expert human review

Table 2. Accuracy of Patternizr on 150 Test Patterns

Algorithm
Completely rebuilt

patterns (no.)
Completely rebuilt

patterns (%)
Patterns with match

in top 10 (no.)
Patterns with match

in top 10 (%)

Burglary 55 (43–67) 37% (29-45) 123 (114–132) 82 (76-88)
Robbery 39 (29–49) 26% (19-33) 117 (107–126) 78 (71-84)
Grand larceny 41 (30–51) 27% (20-34) 114 (103–124) 76 (69-83)

Note. The average performance is listed first, followed by the 95% bootstrapped confidence interval of the performance in parentheses.

Figure 2. (Color online) Performance of Patternizr on 150 Test Patterns

Notes. Each position on the x axis corresponds to a test pattern, and each dot corresponds to the ranking of a crime in that pattern. Patterns are
ordered left to right by the average precision score for that pattern as a visual aid. Patternizr did best on the patterns that appear to the left side of
each chart. Dashed lines indicate the proportion of test patterns with complete reconstruction (left of the vertical red line) and the patterns with a
match in the top 10 rankings (under the horizontal orange line). Roughly one-third of the test patterns are completely reconstructed (as we also
detail in Table 2); that is, no complaints outside of the pattern are ranked higher than a complaint included in the pattern, and roughly four-fifths
of the test patterns have at least one of the complaints in the pattern ranked in the top 10.
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are still required to establish a pattern, minimizing the
potential for a seemingly likely (but incorrect) recom-
mendation to result in any enforcement action.

To confirm that these precautions were effective,
we tested whether any of the three models recom-
mended pairs with a certain racial group at a different
frequency than either random pairing or existing
identified patterns. We randomly selected 5–10 mil-
lion test pairs from each crime type and drew 1,000
bootstrapped samples from each of these samples to
estimate uncertainty (Figure 5).

For all three crime types, the proportion of Pat-
ternizr pairs with a similarity score greater than 0.5,
which included a suspect description of any race,
was either consistent within the 95% confidence limit
or lower than a random sampling of all pairs. That is,
this analysis uncovered no evidence that Patternizr
recommends any suspect race at a higher rate than
exists with random pairing.

Implementation
We incorporated finalized models into the back end
of thedepartment’sDomainAwareness System (DAS),
a citywide network of sensors, databases, devices,
software, and infrastructure (Levine and Tisch 2014,
Levine et al. 2017). We processed all historical pairs
of complaints in parallel in the cloud, against 10 years
of records for burglaries and robberies, and against
3 years of grand larcenies. This historical load took
19.4 days on approximately 1,600 cores. For new and
revised complaints, similarity scores are calculated
and updated three times each day. Each new or re-
vised crime is scored against the entire corpus of
crimes before it is incorporated into DAS for querying
by users throughout the department.
Officers and analysts can access Patternizr through

the custom software application, which is a part of
DAS on NYPD desktop computers. To use Patternizr,
an investigator presses a “Patternize” button on any

Figure 3. (Color online) Peformance of Patternizr Against a Simple Baseline

Notes. Each dot represents a pair of complaints, where one half of the pair is a seed from the test set and the other half of the pair is
another complaint in that pattern. Model performance is better than baseline performance for each pair of sample complaints that lies below
the diagonal line; that is, the algorithm gives a ranking closer to the top of the list than the baseline algorithm.

Figure 4. (Color online) Feature Importances for Patternizr

Notes. Feature importance is one way to gauge the relative contribution of different features to the overall classification of a random forest.
Feature importances are calculated by measuring the Gini impurity reduction at each node at which that feature is used, weighing these
reductions by the number of samples that were routed to that node, and then averaging these calculations for each feature across all trees in the
forest in which that feature is used.
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seed complaint to retrieve all available calculated
similarity scores. Investigators are presented with a
rank-ordered list of results, frommost to least similar
to the seed, with 10 results displayed at a time. For
each result, the distance, time apart, and algorithm-
calculated similarity score are all displayed. A map
displays the seed and similar results (Figure 6), and
users can read a few important details about each com-
plaint before choosing to examine the seed and result
complaints side by side in full detail. The use of a ranked
list, as opposed to a similarity score threshold, allows
us to always display the most similar crimes; thus, the
analysts always have a starting point for their analysis.

The user interface gives investigators the ability to
collaborate with the algorithm using their specialized
expertise. If an investigator has reason to believe that
a certain M.O. is particularly relevant for a given
pattern (e.g., only burglarizing tools from construc-
tion sites), the investigator can actively filter and
query the result list. A general text search, and filters
for distance, time apart, presence of arrest, and premise
type, are all available and may be used simultaneously.
The remaining results are still sorted by Patternizr’s
similarity score. The filters do not reorder the results;
they only exclude crimes that do not meet the search
criteria. In this way, investigators can both search for
a specificM.O. and utilize the rank order of the results
list to immediately display the most similar results,
given the manually specified M.O. criteria.

After approximately two years of development, in-
cluding work on the algorithm, backend systems, and
the user interface, Patternizrwasdeployed toproduction
in December 2016. In parallel, throughout 2017, the
NYPD hired a team of approximately 100 civilian an-
alysts, deployed in the field, to perform crime anal-
ysis. These new crime analysts were trained to use
Patternizr as part of their daily routine. For example, a
crime analyst assigned to a precinct typically reviews
crimes that occurred in his or her precinct to see
whether they are part of a pattern. The uniformed

officer that had been assigned this task before the crime
analysts were hired used manual methods to perform
this review; this review is now conducted using
Patternizr.
Between January 2018 (with crime analysts at fully

staffed levels) to the time of this paper’s writing (July
2018), approximately 400 complaints per week were
run through Patternizr, and this number is trending
upward. This represents approximately 30% of all the
burglaries, robberies, and grand larcenies recorded
by the NYPD during that period. Approximately 80%
of the usage comes from the new crime analysts, with
the remaining 20% coming from uniform officers
performing crime analysis and investigatory duties.
Additionally, crime analysts created more than 90
preliminary patterns per week in the same period
using Patternizr in DAS. These patterns are consid-
ered preliminary because they have not yet been
reviewed and approved by the relevant specialist
units; however, the volume of preliminary patterns
created with Patternizr demonstrates the value of the
tool. Debra Piehl, the NYPD’s Senior Crime Analyst,
says of the tool, “Patternizr dramatically improves
efficiency compared to traditional methods, and it
still allows the analysts that work for me to apply
their own thinking and analysis. The science doesn’t
overwhelm the art” (Piehl 2018).
Crime analysts have also provided specific in-

stances in which official patterns were created be-
cause the Patternizr algorithm recognized similarities
between crimes that the analysts would otherwise
have found difficult to notice. For example, one an-
alyst was examining a recent robbery in her precinct;
the perpetrator was shoplifting power drills from a
commercial establishment and, when confronted,
attacked and injured an employee with a hypodermic
needle. The analyst ran the complaint through Pat-
ternizr, and the algorithm returned an additional
robbery in a distant precinctwhere the perpetratorwas
shoplifting a drill and threatened an employee with a

Figure 5. (Color online) Proportion of Pairs by Race for Random, Historical Pattern, and Patternizr-recommended Pairs

Notes. Confidence intervals are calculated from the range of values that appear in 1,000 bootstrapped samples. Racial categories correspond to
the official descriptions listed on NYPD complaint forms. Notably, many types of grand larceny will not contain suspect information because there
were no witnesses to the crime, thus producing relatively higher levels of uncertainty for grand larceny than for the other two crime types.
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hypodermic needle. This robbery was likely identified
by the algorithm because of high similarity scores for
the time of occurrence, the robbery subtype (began as
shoplifting), the weapon used, and several matching
words in the narratives (e.g., drill, needle). The in-
vestigators combined these two complaints into an
official pattern, along with two other larcenies com-
mitted by the same perpetrator, and the pattern was
then passed to the detective squad. The NYPD con-
ducted an investigation and arrested the perpetrator,
who later pled guilty to larceny and felony assault and
is currently awaiting sentencing.

A second example involves the discovery of a grand
larceny of unattended-property pattern. In this example,
an analyst was examining the theft of a watch from a
locker at a hotel gym in Midtown Manhattan in the late
afternoon. The analyst used Patternizr on this complaint
and discovered three other complaints with the same
M.O.—jewelry and watches were removed from a
locker in a fitness facility in the late afternoon or early
evening in the same area. The algorithm likely recog-
nized similarities in the complaints’ times of occurrence,
their geographic proximity, the property removed
(jewelry and watches), the premise types (gyms), and
keywords in the narrative (e.g., locker). Two suspects
were identified through the review of video footage,
and the NYPD’s investigation is ongoing.

The helpful feedback we have received from our
users has highlighted potential improvements to
Patternizr. For example, users have requested that the
grand larceny algorithm also calculate similarities to
petit larceny complaints, which differ from grand
larcenies only in the value of the items stolen. Users
have also requested the ability to compare across
crime types, such as robberies and grand larcenies,
where the only difference is whether force was used.
We are considering adding this functionality when we
deploy a second version of the Patternizr algorithms.

Conclusion
Patternizr is a new, effective, and fair recommenda-
tion engine deployed by the NYPD to help investi-
gators group related crimes. To our knowledge, this is
the first time such an algorithm has been deployed to
production in a law enforcement environment. It joins
a growing list of machine-learning applications cus-
tomized for public safety and for the public sector in
general. Patternizr is also one of a long line of data-
driven tools prototyped and developed at the NYPD,
including CompStat (Henry 2002). These tools, when
used properly, encourage precision policing approaches
instead of widespread, heavy-handed enforcement
techniques and enable investigators to focus on the art
of policing instead of rote and uninteresting work. We
expect that other departments, and local agencies in

Figure 6. (Color online) Screenshot of Patternizr in the NYPD Domain Awareness System

Notes. The map of the seed and most similar complaints is in the left panel, the seed complaint is in the middle panel, and the most similar
complaints are in the right panel. Grey boxes obscure law enforcement sensitive and personally identifiable information.
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general, will continue this line of research by extracting
similar value from existing government data.
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Appendix A. Feature Extraction
In this section, we provide the mathematical details in-
volved in our feature extraction process.

Categorical Attributes (k = 16 through k = 24)
DefineN to be the number of documents in the corpus. First,
we count the number of documents in the corpus where
attribute k has the value x; we label these counts nkx. Then,

Xk
i,j �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 − ∑

y s.t. nky≤nkmatch

nky
(
nky − 1

)
N(N − 1)

if documents i and
jmatch on attribute k,

0 otherwise,

where the document count nkmatch is defined as the number
of documents in the corpus that have the same value of
attribute k as documents i and j (Boriah at al. 2008).

Suspect Height and Weight Attributes (k = 25 and k = 26)
Call the minimal absolute difference between the value
of a continuous variable associated with suspect h of
complaint i to that of any suspect in complaint j ai,j,h. In
mathematical form, using the weight attribute wi,h of sus-
pect h in complaint i as an example,

ai,j,h � min
f

[∣∣wi,h − wj,f
∣∣],

where the minimum function runs over all suspects f in
complaint j. For example, if complaint 1 has suspects of
weights 140 pounds (lbs), 180 lbs, and 220 lbs, and com-
plaint 2 has suspects of weights 150 lbs and 215 lbs, then
a1,2,1 � 10 lbs, a1,2,2 � 30 lbs, and a1,2,3 � 5 lbs. After calcu-
lating these comparisons, we transform them into a simi-
larity via

Xk
i,j � max

[
exp

(
−Pi

∑Pi

h�0

ai,j,h
Pi + Pj

)
, exp

(
−Pj

∑Pj

h�0

aj,i,h
Pi + Pj

)]
,

where Pi is the number of suspects for complaint i.

Suspect Force Used (k = 27)
In this case, ai,j,h is just the number of suspects in complaint j
with the same value of the categorical feature as suspect h
in complaint i:

Xk�27
i,j � max

[
Pi

∑Pi

h�0

ai,j,h
Pi + Pj

,Pj
∑Pj

h�0

aj,i,h
Pi + Pj

]
.

Unstructured Text for Robberies and Grand Larcenies
(k = 32 Through k = 37)
Treating each attribute k separately, let the term frequency
tfx,i be the count of word x in document i, let the document
frequency dfx be the number of documents in the corpus
containing word x, and let M be the number of unique
words in the corpus. Then, for each word x, we calculate the
inverse document frequency (Jurafsky and Martin 2008):

idfx � log
(
N
dfx

)
+ 1.

The “+1” in this equation ensures that words that occur in
every document in the training corpus will not receive a
zero for inverse document frequency, which would pre-
clude those words from contributing to the eventual cosine
similarity. For each word x and document i, we calculate

sx,i � tfx,i × idfx.

We then build the TF/IDF vector Si for each document i:

Si � [
s0,i, . . . , sM,i

]
.

Finally, for each pair of documents i and j, we calculate the
cosine similarity between the two TF/IDF vectors:

Xk
i,j �

Si ×Sj
SiSj

.

Appendix B. Random Forest Model Training
Trees are recursively built by identifying the best feature k
and split s at each node m, which minimize the Gini index,
a measure of node purity for the two descendent nodes
(Hastie et al. 2009b). Let R be the subset of feature values Xk

left or right of the split s, and let pq,m be the proportion of
class q in node m. Then,

Rleft(k, s) �
{
X | Xk ≤ s

}
, Rright(k, s) �

{
X | Xk > s

}
,

p̂q,m � 1
Nm

∑
xi∈Rm

I (yi � q),

where p̂q,m is the estimated sample proportion of class q in
left or right nodem,Nm is the number of samples in nodem,
and I (yi � q) is an indicator function that returns 1 when
sample i belongs to class q and returns 0 otherwise. We set
q = 1 (i.e., positive examples) and find the combination of k
and s that minimizes the Gini index as follows:

min
k,s

[
2
(
p̂1,left

(
1 − p̂1,left

)) + 2
(
p̂1,right

(
1 − p̂1,right

))]
.

In addition, the group of features Km available for split-
ting at each node is chosen from a randomly selected subset of
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all available features K. Some or all of these features may be
available for splitting at each node; from these available
features, the model selects the feature and split that best
separate the child nodes into purer groups of either in-
pattern or unrelated crime pairs.
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Verification Letter
Jessica S. Tisch, Deputy Commissioner, City of New York
Police Department, Information Technology Bureau, 1 Po-
lice Plaza, Room 900, New York, New York 10038, writes:

“I am a Deputy Commissioner and the Chief Information
Officer of the New York City Police Department. It is my
pleasure to write this letter in support of the NYPD team’s
submission of their work to the INFORMS Journal on Applied
Analytics. I can confirm that the machine learning model
described in “A Recommendation Engine to Aid in Iden-
tifying Crime Patterns,” by Alex Chohlas-Wood and Evan
Levine, has been implemented at the NYPD and is currently
in use across the Department.

Patternizr was introduced in December of 2016 as an
integrated part of the Domain Awareness System. When a
seed complaint is chosen by the user, Patternizr returns a
prioritized list of themost similar complaints in theNYPD’s
database. It is widely used by the new civilian crime ana-
lysts hired by the NYPD because it allows them to review
crime complaints much more efficiently and effectively
than traditional manual search processes. Our analysts
have used it to discover numerous crime patterns that they
might otherwise have missed, which, in turn, helps our
uniformed officers keep the city safe by informing their
deployments and investigations. I knowof no other tool like
it in law enforcement today.”

Alex Chohlas-Wood is the Deputy Director of the
Stanford Computational Policy Laboratory. Alex’s work
focuses on interventions that improve public safety and
compliance. He has led the development of data science and
analytics tools at Fortune 500 companies and large public
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agencies, including as the Director of Analytics for the
NYPD. Alex holds an MS from New York University and a
BA from Carleton College

Evan S. Levine is the Assistant Commissioner of Data
Analytics at the NYPD’s Office of Crime Control Strategies,
where he leads the integration of analytic and operations

research techniques into NYPD operations. Previously, he
was the Chief Scientist at the Department of Homeland
Security’s Office of Risk Management and Analysis. He holds
a PhD in astrophysics from UC Berkeley, a master’s from the
University of Cambridge in England, and a BA fromHarvard
University.
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